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The Sum of Squares1 method (SOS for short) is a powerful technique for solving 3-variable,
homogeneous inequalities with equality when a = b = c. (It is okay if there are other equality cases
as well, but you need to have at least this one). If you have poked around MathLinks, you have
probably heard of SOS, but a lot of the descriptions are in Vietnamese, so most people don’t know
the details. It works as follows:

Sum of Squares:

• Let X be a homogenous expression in terms of a, b, c, and suppose we want to
prove X ≥ 0.

• Write X in the following form:

(a− b)2 · Sc + (b− c)2 · Sa + (c− a)2 · Sb.

If X is a rational function and if X = 0 when a = b = c, this can always be
done just by following an algorithm.

• Prove X ≥ 0 from this form, which is often much, much easier than it was
originally!

In many ways, you can think of SOS as a cleaner and more powerful version of Muirhead. Like
Muirhead, it takes some computation, but the tradeoff is that it solves many problems with zero
insight required.

Before going into any more of the details, let’s begin with a few basic examples:

Example 1. (AM-GM) Prove a3 + b3 + c3 ≥ 3abc for a, b, c ≥ 0.

Solution. a3 + b3 + c3 − 3abc = a+b+c
2 ·

(
(a− b)2 + (b− c)2 + (c− a)2

)
≥ 0.

Example 2. (IMO 1983, #6) Prove a2b(a− b) + b2c(b− c) + c2a(c− a) ≥ 0 for a, b, c the sides of
a triangle.
∗Based partially on Vietnamese notes from MathLinks.
1Note that, despite the name, SOS has very little to do with the useful but ad-hoc technique of writing a positive

expression as a positive linear combination of perfect squares. In SOS, the squares are always (a− b)2, (b− c)2, and
(c− a)2, and the coefficients need not be positive.
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Proof. a2b(a− b) + b2c(b− c) + c2a(c− a) = 1
2

∑
cyc(a− b)2(a + b− c)(b + c− a) ≥ 0.

Example 3. (Schur’s inequality) Prove a3 + b3 + c3 + 3abc ≥
∑

cyc(a
2b + ab2) for a, b, c ≥ 0.

Solution. a3 + b3 + c3 + 3abc−
∑

cyc(a
2b + ab2) =

∑
cyc(a− b)2 ·

(
a+b−c

2

)
. Since Schur’s inequality

is symmetric, we can assume without loss of generality that a ≥ b ≥ c. Then, a + c − b ≥ 0 and
(c−a)2 = (a− b)2 + (b− c)2 + 2(a− b)(b− c) ≥ (a− b)2 + (b− c)2. Therefore,

∑
cyc(a− b)2 ·

(
a+b−c

2

)
is at least

(a− b)2 ·
(

a + b− c

2
+

a + c− b

2

)
+ (b− c)2 ·

(
b + c− a

2
+

a + c− b

2

)
= (a− b)2 · a + (b− c)2 · c ≥ 0.

This completes the proof, but if you do not already know the answer, you should trace back through
the argument to see when equality holds (it’s not just a = b = c).

AM-GM and the IMO problem become absolutely trivial when written in SOS form. Schur’s
inequality is more difficult, as befits a subtler inequality, but I will come back a little later to
explain where that argument is coming from.

1 Writing inequalities in SOS form

The first step to proving X ≥ 0 with SOS is to put X in SOS form. In this section, I will describe
algorithmically how to do that. As we go, I will illustrate the techniques on the following rather
intimidating inequality (USAMO 2003, #5):

∑
cyc

(2a + b + c)2

2a2 + (b + c)2
≤ 8.

There will be a certain amount of computation, but significantly less than what you would get
from multiplying everything out, and the trade-off is there will be basically no insight required. So
without further ado, here is the algorithm:

1. Group X into one or more terms that are 0 when a = b = c.
This is usually pretty straightforward and does not require any cleverness. In our example,
we have

X =
∑
cyc

(
8
3
− (2a + b + c)2

2a2 + (b + c)2

)
=

1
3
·
∑
cyc

4a2 + 5b2 + 5c2 + 10bc− 12ab− 12ac

2a2 + (b + c)2
.

One thing to say is that it is sometimes cleaner to have more than just the three cyclic groups
we used here. See Example 4.

2. Write everything as a multiple of (a− b), (b− c), or (c− a).
Let’s start with the case of the difference of two monomials, say a2c− b2c or a2 − bc. In the
first example, the two monomials have equal c exponent, so we can just extract an a−b factor
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to get (a − b)(ac + bc). In the second example, we add and subtract an intermediate term
and then do the same thing: a2 − bc = a2 − ab + ab− bc = (a− b)a− (c− a)b.

In general, we write each term as a fraction where the numerator is a polynomial with sum
of coefficients equal to 0.2 We then group the polynomial into differences of monomials and
use the above trick. In our example, we have

X =
1
3
·
∑
cyc

2(a2 − ab) + 5(b2 − ab) + 5(bc− ab) + 2(a2 − ac) + 5(c2 − ac) + 5(bc− ac)
2a2 + (b + c)2

=
1
3
·
∑
cyc

(a− b)(2a− 5b− 5c)− (c− a)(2a− 5b− 5c)
2a2 + (b + c)2

.

3. Group everything by (a− b), (b− c), and (c− a), and ensure the coefficients still vanish when
a = b = c.
The grouping here is pretty straightforward. In our example, we have

X =
1
3
·
∑
cyc

(a− b) ·
(

2a− 5b− 5c

2a2 + (b + c)2
− 2b− 5a− 5c

2b2 + (c + a)2

)
.

2a−5b−5c
2a2+(b+c)2

− 2b−5a−5c
2b2+(c+a)2

vanishes when a = b = c, so we’re done with this step. In fact, this
should happen automatically if you keep everything symmetrical.

For inequalities that are not fully symmetric though, we might need to do a little more
work. For example, suppose we get something like (a− b)

(
2a2−b2

a+b

)
. The trick here is to add

something symmetric to each term: (a− b)
(

2a2−b2

a+b −
a+b+c

6

)
. We have subtracted ((a− b) +

(b− c) + (c− a))
(

a+b+c
6

)
, which does not change the sum, but now each coefficient vanishes

when a = b = c, as required. (In this case, we could also have subtracted a+b
2 , which might

have been cleaner.)

4. Write everything as a multiple of (a − b)2, (b − c)2, (c − a)2, (a − b)(b − c), (b − c)(c − a), or
(c− a)(a− b).
This is exactly the same as Step 2, although it tends to be a little messier because we likely
have to clear two (but not three) denominators. In our example, we have

X =
1
3
·
∑
cyc

(a− b) ·
(

12a3 − 12b3 − 9a2b + 9ab2 + 9a2c− 9b2c− 3ac2 + 3bc2

(2a2 + (b + c)2)(2b2 + (c + a)2)

)

=
∑
cyc

(a− b)2 ·
(

4a2 + 4b2 + ab + 3ac + 3bc− c2

(2a2 + (b + c)2)(2b2 + (c + a)2)

)
,

and the inequality has been written in SOS form! In the next section, I will discuss how to
complete the proof from this stage.

2Even if there are square roots, you can do this with difference of squares:
√

a−
√

b = a−b√
a+
√

b
. Things might get

ugly though!
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5. Replace (a− b)(b− c) with 1
2

(
(a− c)2 − (a− b)2 − (b− c)2

)
.

We were somewhat lucky here in that Step 4 immediately put us in SOS form. We could
also end up with some (a− b)(b− c) terms. In that case, we just replace (a− b)(b− c) with
1
2

(
(a− c)2 − (a− b)2 − (b− c)2

)
, and we’re done. (b− c)(c− a) and (c− a)(a− b) terms are

dealt with similarly.

Using this procedure, you can write just about any X in the form (a−b)2·Sc+(b−c)2·Sa+(c−a)2·Sb,
and with some practice, you should be able to do it pretty quickly.

Before covering what to do next, let’s look at a real problem where the hard part is just getting
the inequality into SOS form.

Example 4. (Macedonia Math Olympiad 1999, #5) If a, b, c are positive numbers with a2 + b2 +
c2 = 1, prove that

a + b + c +
1

abc
≥ 4
√

3.

Solution. We first write everything in homogenized form

X = a + b + c +
(a2 + b2 + c2)2

abc
− 4
√

3(a2 + b2 + c2).

This looks pretty terrible, but we can deal with it surprisingly cleanly by splitting it into two parts:(
(a2 + b2 + c2)2 − 3abc(a + b + c)

abc

)
+ 4

(
a + b + c−

√
3(a2 + b2 + c2)

)
=

∑
cyc

(
a4 + a2b2 + a2c2 − 3a2bc

abc

)
+ 4

(
(a + b + c)2 − 3(a2 + b2 + c2)
a + b + c +

√
3(a2 + b2 + c2)

)

=
∑
cyc

(
(a− b)(a3 + a2b)− (c− a)(a3 + a2c) + 3(b− c)2a2

2abc

)
+

4

(
2ab + 2bc + 2ca− 2a2 − 2b2 − 2c2

a + b + c +
√

3(a2 + b2 + c2)

)

=
∑
cyc

(a− b) ·
(

a3 + a2b− b3 − b2a + 3(a− b)c2

2abc

)
+
∑
cyc

(
−4(a− b)2

a + b + c +
√

3(a2 + b2 + c2)

)

=
∑
cyc

(a− b)2 ·

(
(a + b)2 + 3c2

2abc
− 4

a + b + c +
√

3(a2 + b2 + c2)

)

≥
∑
cyc

(a− b)2 ·
(

(a + b)2 + 3c2

2abc
− 2

a + b + c

)
.

To prove X ≥ 0, it therefore suffices to show (a+b)2+3c2

2abc ≥ 2
a+b+c , but this follows from the fact that

((a + b)2 + 3c2)(a + b + c) ≥ (a + b)2c ≥ 4abc.
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As a fun illustration of just how powerful SOS can be, let’s see how it can prove with very little
extra effort the following much stronger version of Example 4:

17(a + b + c) +
1

abc
≥ 20

√
3.

By the same argument as before, it suffices to prove
∑

cyc(a − b)2 ·
(

(a+b)2+3c2

2abc − 10
a+b+c

)
≥ 0.

However, a + b + c ≥ 3 3
√

abc and (a + b)2 + 3c2 ≥ 2ab + 2ab + 3c2 ≥ 3 3
√

12a2b2c2, so that ((a + b)2 +
3c2)(a + b + c) ≥ 9 3

√
12 · abc > 20abc, and the result follows.

2 Analyzing an inequality in SOS form

With Examples 1, 2, and 4, we got lucky in that Sa, Sb, and Sc were all non-negative. Often, this
will not happen. So what do we do in that case? Thankfully, there are some pretty general tools
that we can use.3

Let a, b, c be real numbers with a ≥ b ≥ c, and suppose one of the following holds:

1. Sb ≥ 0, Sa + Sb ≥ 0, and Sb + Sc ≥ 0,

2. Sa ≥ 0, Sc ≥ 0, Sa + 2Sb ≥ 0, and 2Sb + Sc ≥ 0,

3. Sb ≥ 0, Sc ≥ 0, and a2Sb + b2Sa ≥ 0.

Then, (a− b)2 · Sc + (b− c)2 · Sa + (c− a)2 · Sb ≥ 0.

Proof of Condition 1. (c−a)2 = (a−b)2+(b−c)2+2(a−b)(b−c) ≥ (a−b)2+(b−c)2. Since Sb ≥ 0,
it follows that (a− b)2 ·Sc +(b− c)2 ·Sa +(c−a)2 ·Sb ≥ (a− b)2(Sc +Sb)+(b− c)2(Sa +Sb) ≥ 0.

Proof of Condition 2. (c − a)2 = (a − b)2 + (b − c)2 + 2(a − b)(b − c) ≤ 2(a − b)2 + 2(b − c)2. If
Sb ≥ 0, the claim is trivial. Otherwise, (a − b)2 · Sc + (b − c)2 · Sa + (c − a)2 · Sb ≥ (a − b)2(Sc +
2Sb) + (b− c)2(Sa + 2Sb) ≥ 0.

Proof of Condition 3. Since a ≥ b ≥ c, a−c
b−c ≥

a
b . As Sb ≥ 0, we therefore have (b − c)2 · Sa + (c −

a)2 · Sb ≥ (b− c)2 ·
(
Sa + a2

b2
· Sb

)
≥ 0, and the result follows from the fact that Sc ≥ 0.

These criteria are not the only ways of proving an inequality once it is in SOS form, but they are
easy to use and they come up a lot. If you remember them, you will be able to solve most things
(at least symmetric things) that come your way without needing any real insight. For example, if
you go back to the proof of Schur’s inequality, you will see it is just using Condition 1.

Example 5. (USAMO 2003, #5) Let a, b, c be positive real numbers. Prove that

(2a + b + c)2

2a2 + (b + c)2
+

(2b + c + a)2

2b2 + (c + a)2
+

(2c + a + b)2

2c2 + (a + b)2
≤ 8.

3As SOS is still not very well known, quote this theorem without proof at your own risk on a contest. Fortunately,
the proofs for each part are short, so you should be able to reproduce them as needed.
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Solution. We put this in SOS form already in the last section, getting Sc = 4a2+4b2+ab+3ac+3bc−c2

(2a2+(b+c)2)(2b2+(c+a)2)
,

and similar values for Sa and Sb. Since everything is symmetric, we can assume a ≥ b ≥ c. Then,
clearly Sb, Sc ≥ 0.

Now, a2(2b2 + a2 + c2 + 2ac) ≥ b2(2a2 + b2 + c2 + 2bc) because every term on the left-hand side
is as big as the corresponding term on the right-hand side, so a2 · Sb ≥ b2 · 2a2+(b+c)2

2b2+(c+a)2
· Sb, and

b2Sa + a2Sb ≥ b2 ·
(

4b2 + 4c2 + bc + 3ab + 3ac− a2

(2b2 + (c + a)2)(2c2 + (a + b)2)
+

4a2 + 4c2 + ac + 3ab + 3bc− b2

(2b2 + (c + a)2)(2c2 + (a + b)2)

)
= b2 ·

(
3a2 + 3b2 + 8c2 + 6ab + 4ac + 4bc

(2b2 + (c + a)2)(2c2 + (a + b)2)

)
≥ 0.

Therefore, the inequality follows from Condition 3.

Again, you can see that a rather challenging inequality became very weak when placed in basic
SOS form. This happens a lot, which is why the SOS method is useful!

3 Cyclic inequalities and extended SOS form

One disadvantage of the basic SOS method is that it does not handle cyclic but asymmetric in-
equalities very gracefully. In theory, everything is fine, but asymmetric inequalities are messier to
put in SOS form, this form is not unique, you need to analyze two separate cases (a ≥ b ≥ c and
a ≤ b ≤ c), and each case can sometimes be quite tricky.

To make things cleaner, it is often useful to work with the following extended SOS form:

(a− b)2 · Sc + (b− c)2 · Sa + (c− a)2 · Sb + (a− b)(b− c)(c− a) · S.

Generally, we write X = X0 + X1 where X1 is skew-symmetric (i.e., swapping a and b will negate
X1). We then put X0 into basic SOS form as discussed above, and we factor (a− b)(b− c)(c− a)
from X1. It is often useful to make X0 symmetric, but it does not have to be.

Once an inequality is in extended SOS form, we analyze it in much the same way as before.
The following criterion is particularly helpful:

Let a, b, c be real numbers and suppose the following holds:

• Sa ≥ 0, Sb ≥ 0, Sc ≥ 0, and 27SaSbSc ≥ |S3(a− b)(b− c)(c− a)|,

Then, (a− b)2 · Sc + (b− c)2 · Sa + (c− a)2 · Sb + (a− b)(b− c)(c− a) · S ≥ 0.

Proof. By AM-GM, (a−b)2·Sc+(b−c)2·Sa+(c−a)2·Sb is at least 3 3
√

(a− b)2(b− c)2(c− a)2SaSbSc ≥
|S(a− b)(b− c)(c− a)|.

There are other things you can do too, but none of them are too fancy. Instead of memorizing
more criteria, you should be able to just play around with the inequality directly.
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Example 6. (UK TST 2005) Let x, y, z be positive real numbers satisfying xyz = 1. Prove that

x + 3
(x + 1)2

+
y + 3

(y + 1)2
+

z + 3
(z + 1)2

≥ 3.

Solution. Since xyz = 1, we can let x = a
b , y = b

c , and z = c
a . Then, x+3

(x+1)2
=

a
b
+3

(a
b
+1)2 = ab+3b2

(a+b)2
.

Therefore,

X =
∑
cyc

(
ab + 3b2

(a + b)2
− 1
)

=
1
2
·
∑
cyc

a2 + b2 − 2ab

(a + b)2
+

3
2
·
∑
cyc

b2 − a2

(a + b)2
.

Now, ∑
cyc

b2 − a2

(a + b)2
=

∑
cyc

−(a− b)
a + b

=
−(a− b)

a + b
+

(a− b) + (c− a)
b + c

+
−(c− a)

c + a

= (a− b) ·
(

1
b + c

− 1
a + b

)
+ (c− a) ·

(
1

b + c
− 1

c + a

)
=

(a− b)(c− a)
b + c

·
(

1
c + a

− 1
a + b

)
=

(a− b)(b− c)(c− a)
(a + b)(b + c)(c + a)

.

Therefore, we need to show
∑

cyc
(a−b)2

(a+b)2
+ 3(a−b)(b−c)(c−a)

(a+b)(b+c)(c+a) ≥ 0. However, Sa, Sb, Sc ≥ 0, and

27SaSbSc = 27
(a+b)2(b+c)2(c+a)2

≥
∣∣∣ 27(a−b)(b−c)(c−a)
(a+b)3(b+c)3(c+a)3

∣∣∣ = |S3(a − b)(b − c)(c − a)|, so this is true.

This worked out well largely because the asymmetry ended up being only in the numerators. If
you have asymmetry in the denominators, you may want to multiply things out first.

4 Parting comments

• Do not fall in love too much with the basic criteria for proving something in SOS form. Other
techniques (especially smoothing) can often succeed even when the basic criteria fail!

• Sometimes you will see problems that are just too messy for SOS (e.g.
∑

cyc
a√

a2+b+c
≤
√

3
given a2 +b2 +c2 = 3). If you get stuck on this kind of problem, try using classical techniques
to simplify things first (e.g. reduce this example to proving

∑
cyc

a

a2+
(b+c)(a+b+c)

3

≤ 3
a+b+c).

• Even Muirhead is not completely supplanted by SOS. For example,
∑

cyc
1

a3+b3+abc
≤ 1

abc is
much easier to prove with Muirhead than it is with SOS.

• If SOS does not apply directly (e.g. there are 4 variables, things are not homogeneous, etc.),
some of the key SOS ideas can still be useful. Separate out squares that vanish in the equality
case, factor (a− b)(b− c)(c− a) from skew-symmetric terms, etc.
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5 Problems

I recommend using SOS (or at least borrowing the key ideas) to solve these problems. You are
welcome to try other techniques as well, although some of these problems could prove quite difficult
with classical techniques.

1. (Full Schur’s inequality) at(a−b)(a−c)+bt(b−c)(b−a)+ct(c−a)(c−b) ≥ 0 for a, b, c, t ≥ 0.

2. (Nesbitt’s inequality) a
b+c + b

c+a + c
a+b ≥

3
2 for a, b, c > 0.

3. (Somewhere near Russia, 2008) 3a−1
1−a2 + 3b−1

1−b2
+ 3c−1

1−c2
≥ 0 for a, b, c > 0 satisfying a + b + c = 1.

4. (CMO 2008, #3) a−bc
a+bc + b−ca

b+ca + c−ab
c+ab ≤

3
2 for a, b, c > 0 satisfying a + b + c = 1.

5. (IMO 2000, #2)
(
a− 1 + 1

b

) (
b− 1 + 1

c

) (
c− 1 + 1

a

)
≤ 1 for a, b, c > 0 satisfying abc = 1.

6. (Iran 1996) 1
(a+b)2

+ 1
(b+c)2

+ 1
(c+a)2

≥ 9
4(ab+bc+ca) for a, b, c > 0.

7. (Japan MO 1997, #2) (b+c−a)2

(b+c)2+a2 + (c+a−b)2

(c+a)2+b2
+ (a+b−c)2

(a+b)2+c2
≥ 3

5 for a, b, c > 0.

8. (Japan MO 2004, #4) 1+a
1−a + 1+b

1−b + 1+c
1−c ≤ 2

(
b
a + c

b + a
c

)
for a, b, c > 0 satisfying a + b + c = 1.

9. (Vietnam TST 2006, #4) (a + b + c) ·
(

1
a + 1

b + 1
c

)
≥ 6

(
a

b+c + b
c+a + c

a+b

)
for a, b, c the sides

of a triangle.

10. 4a
a+b + 4b

b+c + 4c
c+a + ab2+bc2+ca2+abc

a2b+b2c+c2a+abc
≥ 7 for a, b, c > 0.

11. a4

a3+b3
+ b4

b3+c3
+ c4

a3+b3
≥ a+b+c

2 for a, b, c > 0.

12. (Balkan MO 2005, #3) a2

b + b2

c + c2

a ≥ a + b + c + 4(a−b)2

a+b+c for a, b, c > 0.

13. 2a
b3+c3

+ 2b
c3+a3 + 2c

a3+b3
≤ 1

a2 + 1
b2

+ 1
c2

for a, b, c the sides of an acute triangle.

14. (IMO Short list 2006, A5)
√

a+b−c√
a+
√

b−
√

c
+

√
b+c−a√

b+
√

c−
√

a
+

√
c+a−b√

c+
√

a−
√

b
≥ 0 for a, b, c the sides of a

triangle.

15. (IMO 2006, #3) Determine the least real number M such that |ab(a2 − b2) + bc(b2 − c2) +
ca(c2 − a2)| ≤M(a2 + b2 + c2)2 for all a, b, c.

16. (IMO Short list 2008, A7) (a−b)(a−c)
a+b+c + (b−c)(b−d)

b+c+d + (c−d)(c−a)
c+d+a + (d−a)(d−b)

d+a+b ≥ 0 for a, b, c, d > 0.

17. ab2 + bc2 + ca2 ≤ 2 + abc for a, b, c ≥ 0 satisfying a2 + b2 + c2 = 3.
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6 Problems in SOS form

To help you check your work, I have written each of the problems in SOS form here.

1. 1
2

∑
cyc(a− b)2 · (at + bt − ct) ≥ 0.

2. 1
2

∑
cyc(a− b)2 ·

(
1

(a+c)(b+c)

)
≥ 0.

3.
∑

cyc(a− b)2 · (a−b)2(a+b)
(1−a2)(1−b2)

≥ 0.

4. 1
2

∑
cyc(a− b)2 · c

(a+b)(b+c)(c+a) ≥ 0. This one is also clean with Muirhead.

5. Just rewrite it as Schur’s inequality.

6. 1
4(ab+bc+ca) ·

∑
cyc(a− b)2 ·

(
3ab+bc+ca−c2

(a+c)2(b+c)2

)
≥ 0.

7. 2
5

∑
cyc(a− b)2 ·

(
3a2+3b2−c2+2ac+2bc

((b+c)2+a2)((c+a)2+b2)

)
≥ 0.

8.
∑

cyc(a− b)2 ·
(

1
ab −

1
(a+c)(b+c)

)
− (a−b)(b−c)(c−a)

abc ≥ 0. The criterion I gave for extended SOS
doesn’t work, but there is still an easy proof from here.

9.
∑

cyc(a− b)2 ·
(

1
ab −

3
(a+c)(b+c)

)
≥ 0.

10. (a−b)2(b−c)2(c−a)2

(a+b)(b+c)(c+a)(a2b+b2c+c2a+abc)
≥ 0.

11. 1
4

∑
cyc(a− b)2 ·

(
a2+b2+ab

a3+b3

)
− (a− b)(b− c)(c− a) ·

(
a2b2+b2c2+c2a2

2(a2+b2−ab)(b2+c2−bc)(c2+a2−ca)

)
≥ 0.

12.
∑

cyc(a− b)2 · 1
b ≥ (a− b)2 · 4

a+b+c .

13. 1
a2b2c2(a3+b3)(b3+c3)(c3+a3)

·
∑

cyc(a
6 − b6)(a− b)(c5a + c5b− a2b2c2) ≥ 0.

14.
∑

cyc
(
√

c−
√

a)(
√

c−
√

b)

(
√

a+
√

b−
√

c)(
√

a+
√

b−
√

c+
√

a+b−c)
≥ 0. It’s convenient to stop simplifying here.

15. This is not a real SOS problem since a = b = c is not an equality case, but the key first step is
the hopefully now familiar idea of writing the left-hand side as |(a−b)(b−c)(c−a)(a+b+c)|.

16. This is not standard SOS since there are 4 variables, but the idea is the same. (a − c)2 ·
S+a+c

(S−b)(S−d) + (b− d)2 · S+b+d
(S−a)(S−c) ≥ 3(a− c)(b− d) · (a+c)(S−a)(S−c)−(b+d)(S−b)(S−d)

(S−a)(S−b)(S−c)(S−d) .

17. After normalizing:
∑

cyc(a
2−b2)2 ·(4a2 +4b2 +c2) ≥ 27(a2−b2)(b2−c2)(c2−a2)−108abc(a−

b)(b− c)(c− a). Beware: this is very tight!
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